User
Write something
Pinned
الوصول السريع إلى المحاضرات
https://www.skool.com/zraiee-3956/classroom/38fd1c1d?md=59c2717367114c48973eb82a33dd383c بعد الدخول من خلال الضغط على الرابط في الأعلى تنزل لأسفل القائمة ثم تضغط على خيار (محاضرات منصة سكول) تنسدل لك بعد ذلك قائمة من المحاضرات المتسلسلة
الوصول السريع إلى المحاضرات
Pinned
الوصول السريع إلى الدروس
شرح عملي يعرض كيف يمكن الوصول إلى جميع الدروس وترتيبها بشكل متسلسل من خلال خطوتين فقط اعتمد هذا الترتيب الظاهر في تتبع دروس المنصة ابتداء من اليسار إلى اليمين على النحو التالي: مع مراعاة علامة (✖) بأنه يمكن تجاهلها في الترتيب علامة (✔) تعني أنك في التسلسل الصحيح : تبدأ الدروس من رقم 02 وتنتهي برقم 09 1. All ✖ 2. 01 – مركز البيانات ✔ 3. 02 – مركز الخوارزميات ✔ 4. 03 – مركز النماذج ✔ 5. 04 – مركز التمثيل ✔ 6. 05 – مركز التفاعل ✔ 7. 06 – مركز الأخلاقيات ✔ 8. هندسة الأوامر ✔ 9. تعليمات التكوين ✔ 10. النماذج الذكية ✔ 11. علم التجميع ✔ ______ لا تنسَ حال اختيار الدرس من الضغط على الزر جهة اليمين وتفعيل خيار (New) كما يظهر في الصورة لإعادة ترتيب الدروس بصورة صحيحة _____ أيضاً يمكن الوصول إلى شروحات أخرى عن طريق الضغط على: Classroom سياسة الاستخدام الوصول إلى دروس المنصة ____ هل وجدت هذا الشرح واضحاً
Poll
13 members have voted
الوصول السريع إلى الدروس
الدرس 03 – مرتكزات الذكاء الاصطناعي - النماذج
الدرس الثالث: 🧩 من الخوارزميات إلى النماذج – الجسر الذي تغيّر شكله عندما نحاول تتبّع رحلة النماذج، لا نراها كقفزات مفاجئة بقدر ما نراها كخطوات متتابعة، يتحرك كل منها في أثر الآخر كما تتحرك طبقة طين فوق طبقة في يد نحّاتٍ يعرف أن الشكل لا يولد دفعة واحدة. يبدأ كل شيء من نقطةٍ بسيطة: تجريب خطّ يمكن أن يربط بين الأرقام، أو قاعدة يمكن أن تضبط مسار القرار. كانت النماذج الأولى تشبه رسّامًا يقف أمام لوحة بيضاء، يحاول أن يرسم الخط الأساسي الذي يحمل الشكل. خطّ مستقيم يلتقط علاقة، أو معادلة بسيطة تجيب عن سؤال: هل هذا ينتمي أم لا ينتمي؟ كانت واضحة، شفافة، تستطيع أن ترى المنطق كلّه في صفحة واحدة، لكن وضوحها كان أيضًا اعترافًا بحدودها؛ فهي لا تحلّق فوق المشهد إلا بقدر الخطّ الذي رسمته لها. ومع الوقت، بدا أن العالم أكبر من أن يُختصر في خطّ، وأن الحقيقة ليست دائمًا محصورة داخل معادلةٍ ناعمة الحواف. حاول العلماء عندها الاقتراب من المنطق البشري ذاته: إذا حدث كذا فافعل كذا. قواعد مباشرة، لكنّها لا تعرف الطرق الملتوية؛ تعمل بصرامة، وتتوقف عند أول حالة لا تناسب قالبها. ومع ذلك، كان فيها شيء من الأمان: كل نتيجة يمكن تفسيرها. غير أنّ هذا الأمان كان ثمنه الجمود، وعدم القدرة على العبور نحو المشكلات التي تتطلب مرونة أو احتمالاً أو تقديرًا يخرج عن حدود الصرامة. ثم جاء زمنٌ بدا فيه الجمع بين العالمين ضرورة لا ترفًا. لم تعد القاعدة وحدها تكفي، ولا الإحصاء وحده يُشبع حاجات المشهد، فظهرت النماذج الهجينة، كأنك تمسك بيدين مختلفتين وتحاول أن تجعلهما تعملان بتناغم واحد. يدٌ تضبط القواعد، ويدٌ تستكشف العلاقات الخفية التي لا تُرى بالعين وحدها. رأينا هذا في الطب، في الصناعة، في كل مجال تعجز القواعد وحدها عن أن تُمسك بكل التفاصيل، ويعجز الإحصاء وحده عن تفسير الحالات الشاذة. بدا الأمر خطوة إلى الأمام، لكنه كان أيضًا بابًا إلى تعقيدٍ جديد؛ فكل جزء من النموذج يحتاج إلى صيانة، وكل خيط يحتاج إلى ضبط حتى لا يتشابك مع غيره. ثم حدث شيء مختلف تمامًا، شيء لا يشبه الخطّ ولا القاعدة ولا المزيج بينهما. كأنّ أحدهم قرّر أن يتوقف عن تعليم الآلة كيف تفكر، وأن يتركها تجرب وحدها. فظهرت الشبكات العصبية. لم تعد القواعد مكتوبة، ولم تعد العلاقات تُفرض عليها من الخارج. أصبح النموذج يجلس أمام آلاف الأمثلة، يتعلّم من ملاحظتها شيئًا فشيئًا. طبقةٌ ترى خطًا، وأخرى ترى لونًا، وثالثة ترى شكلًا كاملاً. ثم تأتي طبقات أعلى تجمع كل ذلك، لتكوّن فهمًا لا يشبه ما كتبه أحد، بل ما استخرجته الآلة من التجربة نفسها. كان الأمر أقرب إلى انتقال الفكر من سطح الورقة إلى عمق المشهد.
Poll
15 members have voted
الدرس 03 – مرتكزات الذكاء الاصطناعي - النماذج
الدرس 02 – مرتكزات الذكاء الاصطناعي - النماذج
الدرس الثاني: من الفكرة إلى البنية التي تتعلّم في هندسة البيانات تعلّمنا كيف نُحوِّل الواقع إلى أرقام منظمة تُعبّر عن ظواهر العالم الحقيقي. وفي هندسة الخوارزميات اكتشفنا كيف تمرّ تلك الأرقام عبر سلسلة خطوات دقيقة للوصول إلى نتيجة منطقية. لكن سؤالًا جوهريًا ظلّ معلقًا: أين تُخزَّن هذه المعرفة؟ وكيف تتصرّف الخوارزمية عندما تواجه مشكلة جديدة لم ترها من قبل؟ وهنا هنا يظهر مفهوم النموذج. النموذج هو الكيان الرقمي الذي يحتفظ بنمط التعلّم ذاته، بحيث لا نحتاج لإعادة الحساب من الصفر في كل مرة. إنه أشبه بعقلٍ متدرّبٍ يكتسب الخبرة من الماضي ليحكم على المستقبل، يتذكّر الأنماط التي تعلّمها ويُسقطها على المواقف الجديدة بكفاءة متزايدة. تبدو الخوارزمية والنموذج متشابهين في المظهر، لكن بينهما فرق جوهري. فالخوارزمية هي الوصفة التي تحدد طريقة العمل، أما النموذج فهو النتيجة المتعلّمة التي خرجت من تكرار تطبيق تلك الوصفة على البيانات. يمكن تشبيه الخوارزمية بخطوات خبزٍ دقيقة: أوزان محددة، أوقات مضبوطة، وتسلسل معروف. لكن النتيجة الحقيقية لا تظهر إلا بعد التجربة المتكررة، عندما يصبح الخبّاز خبيرًا يقرأ العجين بعينيه ويعدّل المكونات وفق خبرته السابقة. ذلك الخبّاز هو النموذج: عقل متمرّس تعلّم من التجربة كيف يُحسِّن أداءه دون أن يُعاد تعليمه من البداية. في عالم الذكاء الاصطناعي، تلعب الخوارزمية دور طريقة التدريب، مثل "الانحدار الخطي" أو "الشبكات العصبية"، بينما النموذج هو الكيان النهائي الذي ينتج عنها بعد أن يتدرّب على آلاف البيانات ويستخلص منها قواعده الخاصة. يتكوّن أي نموذج ذكي من أربعة عناصر رئيسة تشكّل بنيته الداخلية: - البنية (Architecture): وهي الشكل العام للنظام؛ مثل عدد الطبقات في شبكة عصبية أو نوع الاتصالات بينها. إنها الهيكل الذي يُبنى عليه كل شيء. - المعلمات (Parameters): وهي القيم أو الأوزان التي يتعلّمها النموذج أثناء التدريب. هي الذاكرة الداخلية التي تختزن التجربة السابقة. - دالة الهدف (Objective Function): وهي المعيار الذي يُحدّد نجاح النموذج؛ كأن يسعى لتقليل الخطأ أو زيادة الدقة أو تحقيق توازنٍ بين الاثنين. - آلية التعلم (Learning Process): وهي الطريقة التي تتغير بها المعلمات في كل دورة تدريب. هي القلب النابض الذي يجعل النموذج ينمو ويتحسن مع الوقت. يمكن تشبيه النموذج بآلة موسيقية: البنية هي تصميم الآلة، والمعلمات هي أوتارها المشدودة، ودالة الهدف هي اللحن الذي نريد عزفه، أما آلية التعلم فهي التمرين اليومي الذي يُتقن به العازف أداته مع مرور الوقت.
Poll
18 members have voted
الدرس 02 – مرتكزات الذكاء الاصطناعي - النماذج
1-30 of 324
powered by
النماذج الذكية | Custom GPTs
نماذج مخصّصة صُمّمت لتمكين أصحاب المشاريع من توظيف الذكاء الاصطناعي بطريقة عملية، تخلق قيمة حقيقية، لتحقيق الدخل وتطوير الأعمال دون تعقيد تقني.
Build your own community
Bring people together around your passion and get paid.
Powered by