Activity
Mon
Wed
Fri
Sun
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
What is this?
Less
More

Memberships

Prime Tech Academy USA

130 members • Free

MB USA Academy

744 members • Free

15 contributions to MB USA Academy
Task 4: Week2 : Integration: Database integration - programming
في هذا التاسك لم أتعامل مع قاعدة البيانات كـ “مكان لتخزين الملفات”،بل كـ ذاكرة ذكية للنظام تجعل التطبيق قابلًا للاستخدام الحقيقي والتحليل لاحقًا. 🔍 كيف تعلّمت؟ بدأت بمراجعة أساسيات قواعد البيانات من MongoDB و Red Hat (REST APIs) لفهم كيف تتواصل التطبيقات مع البيانات عبر واجهات برمجية (APIs) بدل الاتصال المباشر وغير الآمن. فهمت أن الدمج الجيد لا يعني فقط “حفظ البيانات”، بل: - تصميم Database Schema منظم - تحديد العلاقات بين البيانات - حماية المعلومات الحساسة 🛠 ماذا طبّقت عمليًا؟ تعلمت أن أي دمج قاعدة بيانات ناجح يمر بثلاث طبقات: 1. Frontend (واجهة المستخدم)حيث يرسل المستخدم البيانات عبر نموذج أو زر. 2. Backend (الخادم)يستقبل الطلب، يتحقق منه، ثم يتواصل مع قاعدة البيانات. 3. Database (قاعدة البيانات)تخزن المعلومات بطريقة منظمة باستخدام CRUD Operations. ركّزت خصوصًا على: - Data Validation قبل الحفظ (لتجنّب البيانات الخاطئة) - استخدام API Endpoints بدل الاتصال المباشر - التفكير في الأمان منذ البداية 🎯 ماذا استفدت فعليًا؟ - أدركت أن جودة التطبيق لا تُقاس فقط بواجهته، بل بسلامة بياناته. - تعلّمت أن أي نظام يعتمد على المستخدمين يحتاج قاعدة بيانات واضحة ومنظمة. - أصبحت أنظر لأي مشروع من زاوية: Key takeaway: A smart app is only as strong as its database design. 📚 مصادر موثوقة اعتمدت عليها - MongoDB — CRUD Conceptshttps://www.mongodb.com/docs/manual/crud/ - Red Hat — What is a REST API?https://www.redhat.com/en/topics/api/what-is-a-rest-api - MDN Web Docs — Client–Server Architecture
Task 4: Week2 : Integration: Database integration - programming
0 likes • 18h
كلام جميل ووااضح جدا
Week 1: Task 5 (AI ethics and policies)
Ethics in AI isn’t about buzzwords — it’s about real risks and guardrails. Here are the key practical takeaways: 1.Fairness & Bias 2.Transparency & Explainability 3.Privacy & Data Protection 4.Accountability & Governance 5.Human Oversight 6.Continuous Monitoring
Week 1: Task 4 (Prompt library management)
What Prompt Library Management really is It’s the systematic way to create, store, version, test, and reuse prompts — just like code. Why this matters (the real problem) Without prompt management: - Outputs change unpredictably - Teams overwrite each other’s prompts - Nobody knows which prompt is in production - Improvements get lost - Compliance and auditability are impossible
Week 1 :Task 3 (Understanding AI Capabilities)
AI’s Three Flavors – Straight Talk on Narrow, General & Super AI People love talking about Narrow AI vs General AI vs Super AI, but this often confuses reality with science fiction. Here’s the pragmatic truth: - Narrow AI (Weak AI): This is all the AI we actually have today. It excels at specific tasks – think Siri, chatbots, image recognition, or recommendation engines. Narrow AI can diagnose diseases from medical images, drive cars in controlled settings, or beat us at chess or go – but it only does that one thing. It uses stats and pattern matching, not understanding. These systems are powerful within their limited scope, but they can’t apply what they learned to a completely different problem. Example: a face-recognition AI can identify your friend’s face, but won’t suddenly learn to drive a car. - General AI (Strong AI): This is the “smart computer” from movies – an AI with human-like intelligence. In theory, AGI could learn any intellectual task a human can. It would reason, plan, and adapt broadly. Reality check: We do not have AGI and there’s no evidence it exists today. All progress so far is in narrow domains. Building AGI would require machines with consciousness or self-awareness – something we don’t know how to do. In practical terms, don’t bet your strategy on it. Focus on making today’s AI systems reliable and ethical, rather than chasing a hypothetical super-smart bot. - Super AI (ASI): This is pure science fiction – an AI far beyond human intelligence, with its own consciousness and desires. In stories, ASI enslaves or replaces humanity. In reality, ASI is speculative. No one knows if or when it could happen. Most experts agree it’s not imminent. The only real dangers now come from how we use narrow AI, not from a rogue superintelligence.
Week 1: Task 2 (AI Operation Introduction)
AI doesn’t fail because models are weak.It fails because no one knows how to run it in real life. AI Operations (MLOps) is what keeps AI working after deployment. It covers data quality, controlled training, safe deployment, continuous monitoring, governance, and retraining. Without AI Operations: - Models degrade silently - Errors go unnoticed - No accountability exists - Compliance and ethical risks increase - Business value drops to zero Key rule:Data science builds the model.AI Operations keeps it accurate, safe, and useful. If AI is used in real operations, AI Operations is not optional.
3
0
1-10 of 15
Afraa Hassan
3
21points to level up
@afraa-hassan-8523
business woman

Active 6h ago
Joined Feb 18, 2025